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Hypoxia-inducible factor-1a contributes to the
profibrotic action of angiotensin II in renal medullary
interstitial cells
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To examine whether hypoxia-inducible factor (HIF)-1a
mediates the profibrotic effects of angiotensin II, we treated

cultured renal medullary interstitial cells with angiotensin II

and found that it increased HIF-1a levels. This was

accompanied by a significant upregulation of collagen I/III,

the tissue inhibitor of metalloproteinase-1, elevation of the

proliferation marker proliferating cell nuclear antigen, and a

transdifferentiation marker vimentin. All these effects of

angiotensin II were completely blocked by siRNA for HIF-1a
but not HIF-2a. Overexpression of a prolyl-hydroxylase

domain-containing protein 2 (PHD2) transgene, the

predominant renal HIF prolyl-hydroxylase, attenuated the

effects of angiotensin II and its gene silencing enhanced the

effects of angiotensin II. Removal of hydrogen peroxide

eliminated angiotensin II-induced profibrotic effects.

A 2-week infusion of rats with angiotensin II increased

the expression of HIF-1a and a-smooth muscle actin, another

marker of transdifferentiation, in renal medullary interstitial

cells in vivo. Thus, our study suggests that HIF-1a mediates

angiotensin II-induced profibrotic effects through activation

of cell transdifferentiation. We propose that redox regulation

of prolyl-PHD2 plays a critical role in angiotensin II-induced

activation of HIF-1a in renal cells.
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Interstitial fibrosis is correlated with the progression of
chronic renal diseases and has been proposed as a final
common pathway to end-stage renal diseases.1–3 Hypoxia-
inducible factor (HIF)-1a has been recently associated with
the progression of chronic renal injuries.2,4–6 Although
upregulation of HIF-1a has been shown to be protective in
acute ischemic injury,7–9 long-term activation of HIF-1a in
chronic renal diseases is implicated to be patho-
genic.2,3,5,6,8,10–12 HIF-1a has been reported to be upregulated
in chronic renal diseases.2,4,5,8,13 It has also been demon-
strated that HIF-1a stimulates collagen accumulation by
activation of fibrogenic factors, such as plasminogen
activator inhibitor and tissue inhibitor of metalloproteinase
(TIMP).13–16 Angiotensin II (ANG II) is a major pathogenic
factor producing renal fibrosis in chronic renal injury.3,4,17–19

Meanwhile, it has been shown that ANG II stimulates HIF-1a
accumulation.20,21 However, the contribution of HIF-1a to
ANG II-induced profibrotic action has not been evidenced.
In addition, the role of HIF prolyl-hydroxylases, the enzymes
that promote the degradation of HIF-1a,22–24 in the
regulation of fibrogenesis has not been investigated. A recent
study has shown that ANG II inhibits HIF prolyl-hydroxylase
activity and increases HIF-1a level,25 indicating a possible
role of HIF prolyl-hydroxylases in ANG II-induced
profibrotic action. HIF prolyl-hydroxylases are present in
the kidneys and regulate HIF-1a levels.7,26–28 Three HIF
prolyl-hydroxylases, including prolyl-hydroxylase domain-
containing proteins 1, 2, and 3 (PHD 1, 2, and 3), have
recently been identified,22,23,29 and PHD2 is the primary
PHD in the kidneys.7,26–28 This study was designed to test the
hypothesis that HIF-1a accumulation by PHD inhibition is a
critical mediator in the profibrotic action of ANG II using
renal interstitial cells, one of the important cell types involved
in progression of chronic renal diseases.30–32

We first utilized HIF-1a small interference RNA (siRNA)
to silence the gene expression of HIF-1a and evaluated the
contributing role of HIF-1a in ANG II-induced increases in
collagen I/III and TIMP-1 in cultured renal medullary
interstitial cells (RMICs). We then transfected the vectors
expressing rat full-length PHD2 or rat PHD2 siRNA into
the cells to determine whether PHD2 was involved in
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ANG II-induced profibrotic action. To our knowledge, this
study provides the first evidence suggesting that PHD/
HIF-1a-mediated gene regulation importantly participates in
ANG II-induced profibrotic effects in renal cells.

RESULTS
HIF-1a siRNA blocked ANG II-induced increases in
collagen I/III, TIMP-1, proliferating cell nuclear antigen
(PCNA), and vimentin

Our result showed that in RMICs, ANG II induced the
accumulation in collagen I/III and TIMP-1 protein levels,
which is consistent with previous reports.18,33,34 To
determine the role of HIF-1a in ANG II-induced increases
in these fibrogenesis-associated factors, we examined
whether gene silencing of HIF-1a would block these
profibrotic effects of ANG II. As shown in Figure 1, in the
cells transfected with HIF-1a siRNA, ANG II-induced
increases in collagen I/III and TIMP-1 were abolished,
suggesting that ANG II-induced stimulatory effects on
collagen I/III and TIMP-1 are through the activation of
HIF-1a. Figure 1d and e confirmed the accumulation of
HIF-1a induced by ANG II, which was abolished by HIF-1a
siRNA. The concentration of ANG II (10�6

M) used in this
study was a concentration that induced the maximal
activation of HIF-a based on the preliminary experiments
(Supplementary Figure S2 online). This high concentration
of ANG II allowed us to determine the inhibitory effect of
HIF-1a siRNA on ANG II-induced activation of fibrogenic
factors under the maximal stimulation.

Because both hypoxia and activation of ANG II have been
implicated in chronic renal injury,4 we determined whether
ANG II and hypoxia synergistically stabilized HIF-1a. Our
results demonstrated that hypoxia alone exhibited a stronger
effect on HIF-1a levels than ANG II alone. However, ANG II
þ hypoxia did not show significantly further effects
on HIF-1a accumulation compared with hypoxia alone
(Supplementary Figure S3 online). These data indicate that
ANG II and hypoxia may share the same pathway, probably
by inhibition of PHD activity, in stabilizing HIF-1a.

In addition, cell proliferation and transdifferentiation
have been reported to participate in ANG II-induced renal
tubulointerstitial injury.35,36 Therefore, we further deter-
mined the role of HIF-1a in ANG II-induced cell prolifera-
tion and transdifferentiation. Our results showed that gene
silencing of HIF-1a blocked ANG II-induced increases in
the transcriptions of PCNA, a marker of cell proliferation,37

and vimentin, a marker of cell transdifferentiation38

(Figure 2a and b). As ANG II has been reported to induce
epithelial-to-mesenchymal transdifferentiation/transition,39,40

we also detected PCNA and vimentin mRNA levels in rat
renal tubular cells (NRK-52E; ATCC, Manassas, VA) and
demonstrated that HIF-1a siRNA similarly blocked ANG II-
induced increases in PCNA and vimentin in renal epithelial
cells (Figure 2c and d). These results suggest that activation of
HIF-1a mediates ANG II-induced cell proliferation and
transdifferentiation.
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Figure 1 | Effect of hypoxia-inducible factor (HIF)-1a small
interference RNA (siRNA) on angiotensin II (ANG II)-induced
increases in collagen I/III and tissue inhibitor of
metalloproteinase-1 (TIMP-1) in renal medullary interstitial cells
(RMICs) by western blot analysis. (a, d) Representative enhanced
chemiluminescence (ECL) gel documents of western blot analyses
depicting the protein levels of collagen I/III, TIMP-1, and HIF-1a.
(b, c, e) Summarized intensities of collagen I/III, TIMP-1, and HIF-1a
blots normalized to control. *Po0.05 vs all other groups (n¼ 6). In (d),
the sample from CoCl2-treated cells was used as a positive control.
A blot image containing full-size markers for (d) is presented in
Supplementary Figure S1 online to further illustrate the location of
HIF-1a blots.
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HIF-2a siRNA did not affect ANG II-induced increases
in collagen I/III and TIMP-1 in RMICs

It has been shown that HIF-2a is expressed in renal
interstitial cells.41,42 We determined the contribution of
HIF-2a to the effects of ANG II on collagen I/III and TIMP-1
in RMICs. Our results showed that the mRNA levels of
HIF-2a was about 25 times less than that of HIF-1a, and that
although HIF-2a siRNA decreased HIF-2a levels by 76%, it
did not affect ANG II-induced changes in collagen I/III and
TIMP-1 (Figure 3). These data suggest that HIF-2a is not the
primary isoform of HIF in these cells and considerably low
level of HIF-2a does not significantly contribute to the
profibrotic action of ANG II in RMICs in this study.

PHD2 regulated HIF-1a, collagen I/III, and TIMP-1 levels

It has been well characterized that PHDs promote the
degradation of HIF-1a.22 Although the results above showed
that HIF-1a was involved in ANG II-induced profibrotic
action, the role of PHDs in this process remained to be
proven. To address this issue, we first verified the over-
expression or silencing of PHD2 gene by transfection
of PHD2-expressing plasmid or PHD2 siRNA vectors
(Figure 4a). We also confirmed that expression of PHD2
transgene decreased HIF-1a protein level and silencing of
PHD2 gene increased the HIF-1a levels in our experiments
(Figure 4b and c). Interestingly, overexpression of PHD2
transgene decreased collagen I/III and TIMP-1, and silencing
of PHD2 gene increased collagen I/III and TIMP-1 protein
levels (Figure 5). These results suggest that PHD2 regulates
fibrogenesis-associated factors in RMICs. PHD2 was chosen
because it is the predominant PHD in the kidneys7,27,28,43 and

is also quantitatively predominant in the cells used in this
study (Supplementary Figure S4 online).

Manipulation of PHD2 gene altered ANG II-induced increases
in collagen I/III and TIMP-1

The above data proved that PHD2 regulated fibrogenesis-
associated factors. However, it was not clear whether PHDs
participated in the physiological/pathological processes
associated with these fibrogenesis-associated factors. To
determine the role of PHD in the regulation of fibrogenic
factors in response to pathogenic stimulation, we examined
the effect of gene silencing or gene transfection of PHD2 on
ANG II-induced profibrotic action. Figure 6 shows that in
RMICs transfected with PHD2 plasmids, ANG II-induced
increases in collagen I/III and TIMP-1 were significantly
attenuated. In contrast, these ANG II-induced increases in
collagen I/III and TIMP-1 were significantly enhanced when
PHD2 gene was silenced. These results demonstrated that
PHD2 mediated the effects of ANG II on collagen I/III and
TIMP-1. Our data showed that ANG II increased the levels of
PHD2, indicating that the stimulatory effects of ANG II on
HIF-1a, collagen I/III, and TIMP-1 were not via the
downregulation of PHD2 expression.

As PHD1 and PHD3 are present in renal cortical interstitial
cells,44 and HIF-1a in turn regulates the levels of PHDs,44–47

we also evaluated the effects of ANG II and PHD2 siRNA on
PHD1 and PHD3 levels. It was found that ANG II and PHD2
siRNA did not affect PHD3 levels, whereas PHD1 was
marginally increased by ANG II (Supplementary Figure S4
online). It is known that the expression, regulation, and action
of three PHDs are different in specific tissues or cells.29,44–47
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Figure 2 | Effect of hypoxia-inducible factor (HIF)-1a small interference RNA (siRNA) on angiotensin II (ANG II)-induced increases in
proliferating cell nuclear antigen (PCNA) and vimentin mRNA levels by real-time reverse transcriptase (RT)-PCR analysis. (a, b) In
renal medullary interstitial cells (RMICs) and (c, d) in tubular cells. *Po0.05 vs all other groups (n¼ 6).
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These data suggest that PHD2, but not PHD1 and PHD3, is
the predominant enzyme in the cells used in this study.

ANG II inhibited PHD activity and increased collagen I/III and
TIMP-1 via stimulation of H2O2 production

The next question was that by what mechanism ANG II
inhibited the action of PHD2. As ANG II did not down-
regulate the levels of PHD2, as shown in Figure 6, we
investigated the effects of ANG II on PHD activities and
consequent changes in collagen I/III and TIMP-1. PHDs
catalyze site-specific proline hydroxylation of HIF-1a, which
allows recognition by the von Hippel–Lindau tumor-
suppressor protein that targets hydroxylated HIF-1a (HIF-
1a-OH) for its degradation by the ubiquitin–proteasome
pathway. Therefore, the levels of HIF-1a-OH represent the
activity of PHDs. As illustrated in Figure 7, ANG II
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Figure 3 | Effect of hypoxia-inducible factor (HIF)-2a small
interference RNA (siRNA) on angiotensin II (ANG II)-induced
increases in collagen I/III and tissue inhibitor of
metalloproteinase-1 (TIMP-1) in renal medullary interstitial
cells (RMICs) by western blot analysis. (a, c) Representative
enhanced chemiluminescence (ECL) gel documents of western
blot analyses depicting the protein levels of HIF-2a, collagen I/III,
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significantly reduced the HIF-1a-OH levels (Figure 7a, lines 3
and 4), suggesting that ANG II inhibits the hydroxlylating
activities of PHDs. Reduced levels of HIF-1a-OH were
accompanied by increases in collagen I/III and TIMP-1,
indicating that ANG II-induced profibrotic effects are
through inhibition of PHD activities in RMICs.

As ANG II was shown to increase H2O2,48,49 and H2O2 to
inhibit PHD2 activity,25 we further elucidated the role of
H2O2-induced PHD2 inhibition in the profibrotic action of
ANG II in RMICs. These data are presented in Figure 7. In
the cells treated with ascorbate or catalase to eliminate H2O2

effects or remove H2O2, ANG II-induced decreases in HIF-
1a-OH were returned to the control levels (Figure 7a, lines

5–8). In contrast to the changes in HIF-1a-OH, ANG II-
induced increases in collagen I/III and TIMP-1 were
decreased to normal levels by these antioxidative treatments.
These results demonstrated that increased H2O2 production
by ANG II inhibited PHD activities and consequently
promoted the activation of fibrogenic factors. In additional
experiments, we also tested the effects of exogenous H2O2

and found that exogenous H2O2 exhibited similar inhibitory
effects on HIF-1a-OH levels and stimulatory effects on
collagen I/III and TIMP-1 as ANG II did (Figure 7a, lines 9
and 10). These results further indicated that the actions of
ANG II were through stimulation of H2O2 production. ANG
II-induced oxidative stress was confirmed by detecting the
increases in superoxide production (Figure 8a and b) and
H2O2 levels (Figure 8c) in ANG II-treated cells. Overall, these
data showed that ANG II increased TIMP-1 and induced the
accumulation of collagen I/III via inhibition of PHD activity
by stimulating the production of H2O2.

Infusion of ANG II stimulated the expression of HIF-1a and
a-smooth muscle actin (SMA) in RMICs in vivo in the kidneys

Infusion of ANG II (150 ng/kg/min) for 2 weeks significantly
increased the number of HIF-1a- and SMA-positive RMICs
in the kidneys by immunohistochemical analysis (Figure 9).
SMA is also a molecular hallmark of fibroblast activation
during fibroblast to myofibroblast transition.50–52 These data
demonstrate that ANG II-stimulated activation of HIF-1a
and transdifferentiation in RMICs also occurs in the kidneys
in vivo.

DISCUSSION

This study showed that gene silencing of HIF-1a blocked
ANG II-induced increases in TIMP-1 and collagen I/III, as
well as PCNA and vimentin. It was also demonstrated that
PHD2 mediated the effects of ANG II on HIF-1a, collagen I/
III, and TIMP-1, and that ANG II induced collagen I/III and
TIMP-1 via stimulating the production of H2O2 that
inhibited PHD activity. These results suggest that ANG II-
induced profibrotic action may be mediated by activation of
HIF-1a because of redox inhibition of PHD activity.

In this study, we used the increases of TIMP-1 and
collagen as indicators of ANG II-induced profibrotic action.
To our knowledge, the findings from this study provide the
first evidence that ANG II-induced activation of fibrogenesis-
associated genes is mediated by activation of HIF-1a. This
study did not show the significant contribution of HIF-2a in
ANG II-induced profibrotic action in RMICs. The reason for
a very low level of HIF-2a is probably that HIF-2a-expressing
cells are mainly located in the cortex and outer strip of outer
medulla,41,42 whereas the RMICs used in this study are
isolated from the inner medulla. The cells used in this study
seem not to be characterized similar to the interstitial cells
located in the cortex with respect to HIF-2a expression.
However, it has been reported that the medullary interstitial
fibrotic injuries are similar to or more profound than cortical
interstitial fibrotic injuries in chronic renal diseases.53,54
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Figure 5 | Effect of prolyl-hydroxylase domain-containing
protein 2 (PHD2) or PHD2 small interference RNA (siRNA)
expression vectors on the levels of collagen I/III and tissue
inhibitor of metalloproteinase-1 (TIMP-1) in renal medullary
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(a) Representative enhanced chemiluminescence (ECL) gel
documents of western blot analyses depicting the protein levels
of collagen I/III and TIMP-1. (b, c) Summarized intensities of
collagen I/III and TIMP-1 blots normalized to control. *Po0.05 vs
all other groups (n¼ 6).
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Therefore, the medullary interstitial cells used in this study
may present a model of cells involved in renal medullary
interstitial damage.

Another interesting finding in this study is that HIF-1a
may also mediate ANG II-induced cell transdifferentiation.
Cell transdifferentiation, including epithelial–mesenchymal
transition, importantly contributes to the development
of renal fibrosis in chronic renal diseases.55–58 During

fibrogenesis, renal resident fibroblasts are activated to
transform/transdifferentiate into myofibroblasts, which are
primary cell resources to produce extracellular matrix.59–61

Increased expression of vimentin has been shown to be the
indicator of transition from fibroblasts to myofibroblasts.31,52

Although both HIF-1a5,16,62 and ANG II39,40 have been
shown to promote cell transdifferentiation, the interaction
between HIF-1a and ANG II in the process of cell trans-
differentiation remains unclear. Our results demonstrate that
HIF-1a may participate in ANG II-induced transdifferentia-
tion of renal cells. These data suggest that HIF-1a pathway
may be involved in the relatively early stage of ANG II-
induced profibrotic actions, which may represent a novel
mechanism linking HIF-1a-regulated gene transcription to
ANG II-induced profibrotic action.

HIF-1a regulates many target genes and thereby has an
important role in many physiological processes. Therefore,
there may be a concern that blockade of HIF-1a-mediated
gene expression may also prevent some important physio-
logical responses and impair normal cell functions. Because
there is an overactivation of HIF-1a after ANG II treatment
or in chronic renal diseases, inhibition of HIF-1a under these
pathological conditions should aim at counteracting excessive
HIF-1a activity and eliminating its pathological impact,
thereby restoring normal physiological regulation. Therefore,
inhibition of HIF-1a could be a useful strategy to reduce the
fibrogenesis by resetting such excessive HIF-1a activity to the
normal level in a variety of pathological conditions.

PHDs have been reported to regulate the target genes of
HIF-1a via their actions degrading HIF-1a.63–66 Given the
critical role of HIF-1a in fibrogenesis, PHDs may also be
regulators of fibrogenesis. Indeed, our results demonstrated
that PHD2 regulates the levels of TIMP-1 and collagen in
renal cells, which may reveal a novel pathway that modulates
the fibrotic process. Although PHDs work as oxygen sensors
to regulate the destruction of HIF-1a by promoting the
oxygen-dependent proline hydroxylation of HIF-1a,22–24

recent evidences have clearly shown the oxygen-independent
regulation of HIF-1a and PHDs.67–70 Most importantly, ANG
II has also been shown to inhibit PHD activity and
upregulate HIF-1a levels.25 This study proved the hypothesis
that PHD participates in the regulation of fibrogenic factors
and is involved in ANG II-induced profibrotic action.
Overexpression of PHD2 transgenes overcame ANG II-
induced profibrotic effects, suggesting that PHD may be
used as an anti-fibrotic factor under different pathological
situations, such as activation of ANG II in chronic renal
diseases. In this respect, targeting PHD to regulate HIF-1a
and its target genes is emerging as a novel therapeutic
strategy in a variety of disease conditions such as tumor64

and postischemic organ injuries.63,71–73 The findings from
this study that PHDs participate in the regulation of
fibrogenic factors under control condition and after ANG
II treatment may stimulate the development of intervention
associated with PHD/HIF pathway to retard the progression
of chronic renal diseases.
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Figure 6 | Effect of prolyl-hydroxylase domain-containing
protein 2 (PHD2) or PHD2 small interference RNA (siRNA)
expression vectors on the levels of collagen I/III, tissue
inhibitor of metalloproteinase-1 (TIMP-1), and PHD2 in the
presence of angiotensin II (ANG II) in renal medullary
interstitial cells (RMICs) by western blot analysis. (a)
Representative enhanced chemiluminescence (ECL) gel
documents of western blot analyses depicting the protein levels
of collagen I/III, TIMP-1, and PHD2. (b–d) Summarized intensities
of collagen I/III, TIMP-1, and PHD2 blots normalized to control.
*Po0.05 vs all other groups (n¼ 6).
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Notably, our results showed that ANG II increased PHD2
levels. This ANG II-induced increase in PHD2 levels is
probably caused by a feedback mechanism because of
increase in HIF-1a level, because PHD2 is one of HIF-1a
target genes and activation of HIF-1a upregulates PHD2
levels.74 This study found that ANG II stimulated HIF-1a
activation and increases in collagen I/III and TIMP-1 through

inhibition of PHD activity rather than downregulation of the
PHD expression. In addition, we showed that ANG II
inhibited PHD activity via stimulating H2O2 production.
These data demonstrate, for the first time, that ANG II
stimulates fibrogenic factors via activation of H2O2 produc-
tion and that H2O2 promotes fibrotic process via inhibition
of PHD activity. Although redox signaling has been indicated
in chronic renal injury, detailed mechanisms remain to be
clarified. Our data suggest that redox regulation of PHD
activity and thereafter manipulation of fibrogenic factors may
represent an important mechanism mediating chronic renal
injury by oxidant stress.

This study focused on the role of HIF-1a/PHD pathway in
ANG II-induced activation of fibrogenic factors using
cultured RMICs. Our finding that ANG II stimulated HIF-
1a and SMA in RMICs in vivo further suggests that HIF-1a/
PHD pathway may be involved in ANG II-induced chronic
renal injury. The exact significance of HIF-1a/PHD pathway
in chronic renal injury needs to be further clarified using
chronic renal disease models associated with ANG II
activation. In this regard, there were controversial reports
on the role of HIF-1a in different chronic renal disease
models. A recent study demonstrated that stable expression
of HIF-1a in tubular epithelial cells promoted interstitial
fibrosis in 5/6 nephrectomy mice,12 whereas a previous report
showed that inhibition of PHD to upregulate HIF-1a
protected the kidneys from damage in 5/6 nephrectomy
rats.75 In addition, it was reported that genetic ablation of
renal epithelial HIF-1a inhibited the development of renal
tubulointerstitial fibrosis in unilateral ureteral obstruction
rats,16 whereas upregulation of HIF-1a by cobalt, an inhibitor
of PHD activity, was shown to ameliorate renal injury in
an obese, hypertensive type 2 diabetes rat model.76 These
discrepancies might be attributed to the differences in
disease models, disease stages, and approaches manipulating
HIF-1a. Apparently, more detailed investigations are required
regarding the role of HIF-1a/PHD pathway in the chronic
renal diseases.

In summary, this study demonstrated that ANG II
stimulated H2O2 production, which inhibited PHD activity
and thereby upregulated HIF-1a levels, and consequently
activated TIMP-1, resulting in collagen I/III accumulation in
RIMC cells. It is concluded that PHD2 as a novel redox-
sensitive enzyme is critical to the regulation of HIF-1a levels
when renal interstitial cells were exposed to ANG II. Such
PHD-mediated regulation of HIF-1a level and activity could
be one of the important early mechanisms inducing
transdifferentiation and promoting the upregulation of
fibrogenic genes in renal cells under profibrotic stimulations.

MATERIALS AND METHODS
Animals
Experiments were performed on male Sprague-Dawley rats (Harlan,
Madison, WI), weighing 250–300 g. All animal procedures were
approved by the institutional animal care and use committee of the
Virginia Commonwealth University.
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Figure 7 | Effect of angiotensin II (ANG II) or H2O2 on the levels
of hydroxylated hypoxia-inducible factor-1a (HIF-1a-OH),
collagen I/III, and tissue inhibitor of metalloproteinase-1
(TIMP-1) in the presence or absence of catalase or ascorbate by
western blot analysis. (a) Typical enhanced chemiluminescence
(ECL) gel documents of HIF-1a-OH, collagen I/III, and TIMP-1
protein levels. (b–d) Summarized intensities of HIF-1a-OH,
collagen I/III, and TIMP-1 blots normalized to control. *Po0.05 vs
all other groups except the group also marked with * (n¼ 6).
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Isolation and culture of rat RMICs
RMICs were isolated and cultured as described previously.43 Briefly,
the renal inner medulla from inbred male Sprague-Dawley rats was
finely minced, and the tissue suspension was injected subcuta-
neously into a recipient rat (from the same litter). At 4 days after
injection, the firm yellow nodules located at the site of injections
were dissected, removed, minced, and trypsinized, and then washed
and centrifuged to obtain a cell pellet. The cell suspension was
transferred to plastic tissue culture flasks and then incubated with
modified culture medium. These cells formed a confluent mono-
layer in 18–21 days. The cells of seventh and eighth passage were
used for experiments. The identity of these cells was confirmed by
rich lipid granules within the cells stained with Sudan Black B and
Oil Red O (Figure 10), which are characteristics of these cells.77–79

Transfection of HIF-1a and HIF-2a siRNA
Transfection of siRNA was performed using the siLentFect lipid reagent
(Bio-Rad, Hercules, CA) according to the manufacturer’s instructions.
For a 10 cm dish, 200 pmoles of siRNA was used. After 5 h incubation

in transfection reagent, the cells were then switched to normal medium
for additional 16 h and were ready for experiment. The sequence of
HIF-1a siRNA was: sense, 50-GGAAAGAGACUCAUAGAAA-30 anti-
sense, 50-UUUCUAUGACUCUCUUUCC-30 (Sigma-Aldrich, St Louis,
MO). The sequence of HIF-2a siRNA was: sense, 50-GCAGAUGGA
UAACUUGUAC-30; antisense, 50-GUACAAGUUAUCCAUCUGC-30

(Applied Biosystems, Carlsbad, CA). A scrambled small RNA (QIAGEN,
Valencia, CA), which was confirmed as non-silencing double-stranded
RNA, was used as control for siRNA experiments.

Transfection of plasmids expressing rat PHD2 or rat PHD2
siRNA into the cells
Plasmid transfections were performed using lipids (DOTAP/DOPE;
Avanti Polar Lipids, Alabaster, AL) according to the manufacturer’s
instructions. In brief, 5 mg of DNA was mixed with lipid solution in a
ratio of 1:10 (DNA/lipid, w/w) in serum-free culture medium (5 ml
for a 10 cm dish). Cells were incubated with this transfection medium
for 5 h and switched to normal medium for another 16 h. The cells
were then ready for experiment. In preliminary experiments, almost all
cells were positive after transfection with luciferase plasmids when
detected by bioluminescent imaging (IVIS200; Caliper Life Sciences,
Hopkinton, MA), demonstrating a high transfection efficiency (data
not shown). Sequences used for producing rat PHD2 siRNA were:
sense, 50-GTGTGACATGTATATATTA-30; antisense, 50-TAATATATA
CATGTCACAC-30(QIAGEN). The DNA sequence was constructed
into pRNAT-CMV3.2 vector (GenScript, Piscataway, NJ) to generate
plasmids that express rat PHD2 siRNA. Plasmids encoding full-length
rat PHD2 were generous gifts from Dr Frank S. Lee (University of
Pennsylvania). The expression and function of rat PHD2 protein
by this plasmid has been validated by Dr Lee80,81 and by us.43 Our
preliminary data showed effective gene knockdown or gene over-
expression of PHD2 by these plasmids in cultured RMICs. Luciferase
plasmids (Promega, Madison, WI) were used as control for PHD2 and
PHD2 siRNA expression vector transfection experiments.

Cell treatment and experimental groups
After siRNA or plasmid transfections, the cells were switched to
serum-free medium containing 10�6

M of ANG II. After ANG II
treatment for 20 h, the cells were harvested for protein and RNA
isolation as described below. Some of the cells were treated with
H2O2 (5� 10�5

M), ascorbate (10�4
M), or catalase (1000 U/ml) as

indicated in the experimental groups in results. The concentrations
of H2O2 and ANG II used in this study did not cause detectable cell
damage as measured by lactate dehydrogenase activity (Assay Kit;
Cayman Chemical, Ann Arbor, MI) (Supplementary Figure S5 online).

Preparation of nuclear extracts and cytosolic protein,
western blot analyses for protein levels of HIF-1a,
HIF-2a, TIMP-1, collagen I/III, and PHD2
Nuclear protein was prepared as we described previously.43 Cytosolic
protein and nuclear protein were collected separately. The cytosolic
protein was used for western blot analyses of TIMP-1, collagen I/III,
and PHD2. The reason for detecting collagen I/III is that the subtype
of collagen is tissue/cell specific and collagen I/III is the one
expressed in renal interstitial cells. The nuclear fraction was used for
western blot analyses of HIF-1a and HIF-2a. Western blot analyses
were performed as described previously.43 The intensity of the blots
was determined using an imaging analysis program (ImageJ, free
download from http://rsbweb.nih.gov/ij/). The primary anti-
bodies used in this study included anti-rat HIF-1a and HIF-2a
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(monoclonal, 1:300 dilution; Novus Biologicals, Littleton, CO),
HIF-1a-OH (rabbit polyclonal, 1:500; Novus Biologicals), PHD2
(rabbit polyclonal, 1:300; Novus Biologicals), TIMP-1 (monoclonal,
1:1000; R&D Systems, Minneapolis, MN), and collagen I/III (rabbit
polyclonal, 1:300; Calbiochem, San Diego, CA). For the details of
this and the following methods, see the Expanded Materials and
Methods section in online Supplement.

RNA extraction and quantitative reverse transcriptase-PCR
analysis of the mRNA levels of PNCA, vimentin, and PHD
Total RNA was extracted using TRIzol solution (Life Technologies,
Rockville, MD) and then reverse-transcribed (cDNA Synthesis Kit;
Bio-Rad). The reverse-transcribed products were amplified using a
TaqMan Gene Expression Assays kit (Applied Biosystems). A kit for
detecting the levels of 18S ribosomal RNA was used as an
endogenous control. The relative gene expressions were calculated
in accordance with the DDCt method. Relative mRNA levels were
expressed by the values of 2�DDCt.

Superoxide (O2
K�) detection by electronic spin resonance

The measurement of O2
K� by electronic spin resonance was

performed according to the methods in our previous studies.82,83

Fluorescence spectrometric assay of H2O2 concentrations
Amplex red is a fluorogenic substrate with very low background
fluorescence; it reacts with H2O2 with a 1:1 stoichiometry to
produce highly fluorescent resorufin.84 Fluorescence spectrometric
assay of H2O2 levels in culture medium was performed using an
Amplex red kit (Molecular Probes, Eugene, OR) as we described
previously.85

Infusion of ANG II and immunohistochemical analysis
of HIF-1a and a-SMA expression in RMICs in the kidneys
Rats were infused with ANG II (150 ng/kg/min; Sigma-Aldrich) for
2 weeks using ALZET mini-osmotic pumps (Model 2002) implanted
intraperitoneally. At the end of infusion, kidneys were removed, cut
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Figure 10 | Sudan Black B and Oil Red O staining in renal
medullary interstitial cells (RMICs) and tubular cells. The cell
shapes were apparently different between these two types of
cells. There were numerous positive-staining vesicles in RMICs. In
contrast, there were few such positive-staining vesicles observed
in tubular cells (original magnification � 200).
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longitudinally, fixed in 10% neutral buffered formalin, and then
processed for immunostaining as we described before43 using
antibody against rat HIF-1a 1:200 and SMA (rabbit polyclonal,
1:200; Abcam, Cambridge, MA). Expressions of HIF-1a and SMA in
RMICs were evaluated by counting RMICs in 10 microscopic fields
(� 400, around 100 cells) and then the percentages of positive-
staining RMICs were calculated. RMICs were identified by their
unique morphological features, that is, ladder-like arrangement with
the long axis of the cells perpendicular to the long axis of the
papilla.86,87

Statistics
Data are presented as means±s.e. The significance of differences in
mean values within and between multiple groups was evaluated
using an analysis of variance followed by Duncan’s multiple range
test. Student’s t-test was used to evaluate statistical significance of
differences between two groups. Po0.05 was considered statistically
significant.
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